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Computer simulation of random packing of unequal particles

D. He, N. N. Ekere, and L. Cai
Department of Aeronautical, Mechanical, and Manufacturing Engineering, The University of Salford, Salford M5 4WT, United Kin

~Received 10 May 1999!

A Monte Carlo simulation model for the random packing of unequal spherical particles is presented in this
paper. With this model, the particle radii obeying a given distribution are generated and randomly placed
within a cubic packing domain with high packing density and many overlaps. Then a relaxation iteration is
applied to reduce or eliminate the overlaps, while the packing space is gradually expanded. The simulation is
completed once the mean overlap value falls below a preset value. To simulate the random close packing, a
‘‘vibration’’ process is applied after the relaxation iteration. For log-normal distributed particles, the effect of
particle size standard deviation, and for bidisperse particles, the effects of particle size ratio and the volume
fraction of large particles on packing density and on coordination number are investigated. Simulation results
show good agreement with that obtained by experiments and by other simulations. The randomness, homoge-
neity, and isotropy, which have not been evaluated before for packing of distributed particles, are also exam-
ined using statistical measures.@S1063-651X~99!02312-0#

PACS number~s!: 81.05.Rm, 05.45.2a, 89.80.1h
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I. INTRODUCTION

The random packings of hard spherical particles h
long been of interest because they can serve as useful m
for many physical and engineering systems, such as the
crostructures of simple liquids@1#, concentrated suspension
@2#, amorphous materials@3#, ceramic components prepare
by compaction of powders@4#, and porous materials. Man
experimental@5–9# and analytical@10–14# investigations
have been reported. The packing structure, which influen
the mechanical, electrical, and thermal properties of s
materials, can be characterized by several parameters,
as the packing density, the coordination number, and
radial distribution function. It is an extremely labourious ta
to obtain these parameters by experiment, while theore
analysis cannot provide details of the structural data, suc
the distribution of coordination numbers and the radial d
tribution function.

Computer simulation has been proven as a powerful m
sure in the study of particle random packing and many m
els have been developed. The simulation models can be
sified into two categories, the sequential generation mo
and the collective rearrangement models. The seque
generation models can be further divided into two types
the first case, one particle is dropped vertically each ti
onto the surface of an existing particle cluster which gro
upwards@15–18#. In the second case, a particle is centr
etally placed on the surface of a center cluster which gro
outwards@19–22#. With the collective rearrangement mode
@23–29#, the initial positions of particles are randomly ge
erated within the packing domain with high initial packin
density and many overlaps. Then a relaxation process is
peated to separate the overlapping particles. As the ove
approaches a stable value but is still higher than a spec
tolerance, the particle sizes are reduced. The relaxation
particle size reduction processes are repeatedly applied
the simulation is completed when the overlap value dr
below the given tolerance.

Most of the models developed to date have only be
PRE 601063-651X/99/60~6!/7098~7!/$15.00
e
els
i-

es
h
ch
e

al
as
-

a-
-

as-
ls
ial
n
e
s
-
s

e-
ap
ed
nd
nd
s

n

applied to particles of equal size. In practice, however,
particle sizes are most likely to be distributed, such as m
and ceramic powders, paint pigment, and the atoms o
simple homogeneous liquid. For industrial applications, s
eral advantages can be gained by the use of powders
polydisperse particles, such as obtaining higher density c
ponents of powders@22# and increasing the fluidity of con
centrated suspensions@30–32#. The above facts underline th
significance of studying the effect of particle size distributi
on the random packing structure. Clarke and Wiley@26# and
Jullien and Meakin@18# simulated the random packing o
bidisperse systems by collective rearrangement model an
sequential deposition model, respectively. The particle s
of natural materials are often represented by log-normal
tribution @33,34#. Significant contributions to the simulatio
of random packing of particles obeying log-normal distrib
tion were made by Konakava and Ishizaki@22#, Nolan and
Kavanagh@28#, and by Yanget al. @29#. Konakava and Ish-
izaki moved particles toward the packing center one by o
The packing density obtained by this model decreases w
the increase in particle number. The models developed
Nolan and Kavanagh and by Yanget al. both belong to the
collective rearrangement category. Nolan and Kavanagh
sented a repulsive force to relocate the overlapped parti
and this repulsive force allows smaller particles to tra
longer distance. The sample size of this model was sm
which might induce significant variation in simulation re
sults. Yanget al. only moved the overlapped particles
small distance along the vector sum of overlaps with s
rounding particles each time, and did not allow the over
free particles to move. If a particle was locked in by
surrounding particles, it was allowed to shrink by 10%
diameter. This model was capable of simulating a large nu
ber of particles. However, due to the individual shrinkage
particles, the final size distribution was inconsistent with t
initial distribution.

In this paper, we present a Monte Carlo simulation mo
which is applicable to the random packing of spherical p
ticles obeying any specified distribution. This model can
7098 © 1999 The American Physical Society
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PRE 60 7099COMPUTER SIMULATION OF RANDOM PACKING OF . . .
classified into the collective rearrangement category. In
next section, we describe the algorithm used for this simu
tion model. In Sec. III, we present the simulation results
bidisperse particles and log-normal distributed particles,
the randomness, homogeneity, and isotropy of the pack
and discuss the effect of particle size distribution on
packing properties. The final section presents our con
sions.

II. THE ALGORITHM

For random loose packing, the algorithm is composed
three main procedures: particle size and initial position g
eration, overlap relaxation, and packing space expansion
random close packing a ‘‘vibration’’ process is applie
within the relaxation procedure. For convenience, the m
radius of log-normal distributed particles is normalized to
1.0, and the radii of small particles of bidisperse mixtu
equal to 1.0.

The particle sizes are generated by the following metho
For bidisperse particles, at a given fraction of large partic
PL , we examine the values of a set of random numb
(p1 ,p2 ,...,pn) which obey uniform distribution over~0, 1!.
If pi.PL , then r i51.0, otherwiser i5l. l is the ratio of
radii of large particle to small particle andn is the total
number of particles.

For particles obeying log-normal distribution, the pro
ability density function of particle radiusr is given by

f ~r !5
1

A2psr
e2~ ln r 2 ln r 0!2/2s2

, ~1!

where lnr0 ands are the mean and the standard deviation
ln r. If the mean of particle radii is normalized to be 1.0, th
ln r0 approaches zero. Again, we first generate a set of
dom numbers (p1 ,p2 ,...,pn) obeying uniform distribution
over ~0, 1!. Then we obtain a set of random numbe
(r 1 ,r 2 ,...,r n) obeying log-normal distribution by two con
versions ast i5s(2 ln pi)

1/2sin(2ppi11), andr i5exp(ti). Fig-
ure 1 is the comparison of theoretical density function w
that of ten thousand samples generated by the above me

The initial position (xi ,yi ,zi) of a particle is generated
within a cubic domain and (xi ,yi ,zi) obey uniform distribu-

FIG. 1. Comparison of theoretical log-normal distribution wi
numerical sampling.
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tion over (01r i ,L02r i). L0 is the initial size of the domain
and is decided by the following equation:

L05F 1

F0
(
i 51

n
4

3
pr i

3G1/3

, ~2!

wheref0 is initial packing density which we take unphys
cally higher than the attainable close random packing den
thus causing many overlaps. In this study 0.75 is taken as
value off0 for random loose packing and 0.86 for rando
close packing.

The overlap rate between two particle is defined asr i
1r j2di j )/(r i1r j ), wheredi j is the center to center distanc
and di j ,(r i1r j ). In the rearrangement procedure, the fo
lowing relaxation technique is applied to relocate particles
reduce or eliminate overlaps. For each particle, particlei, for
example, a search of particles which overlap particlei is
conducted first. Then from each of the overlapping partic
j (xjyjzj ), for example, as shown in Fig. 2, a new positio
can be calculated by the following equation:

Rj i 5Rj1~Ri2Rj !
r i1r j

di j
, ~3!

whereRi andRj are vectors of the centers of particlei andj,
respectively. If particlei is overlapped byni particles, then
by Eq.~3! ni positions can be obtained, and the new posit
of particle i is given by

Ri
l5

1

ni
(
j 51

ni

Ri j . ~4!

Figure 3 shows the two-dimensional case of the relocation
particle i by one step. This relaxation is applied to eve
overlapped particle. If a particle neither overlaps nor conta
others, it is moved to contact its nearest neighbor. Period
boundary condition is applied to particles near the bounda
After one iteration each particle has been relocated once
repeating the iteration the mean of the overlap rates gra
ally decreases. To avoid any bias the sequence of par
rearrangements is randomized after each iteration.

After a given number of iterations, packing space is e
panded toL5alL0 . al is the expanding factor which is de
pendent on the present mean overlap rate. By repeating
relaxation and expansion procedures, the overlap rate e
tually drops below a preset tolerance and the simulation
completed. In this study, 2.031024 is accepted as the toler

FIG. 2. Separation of particlei from particlej.
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7100 PRE 60D. HE, N. N. EKERE, AND L. CAI
ance which ensures that the relative error of the final pack
density will be less than 1023.

To simulate the random close packing obtained by vib
tion, we increase the number of rearrangement iteratio
Meanwhile, after each iteration, we apply a ‘‘vibration’’ pro
cess to randomly disturb the positions of those partic
which have a coordination number less than 4 since the
ticles that form bridges have fewer contacts with others.

III. RESULTS AND DISCUSSION

The above simulation algorithm was applied to simul
the random loose and random close packings of log-nor
distributed and bidisperse particles. We observed that

FIG. 3. Relocation of particlei.
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packing density increases with the increase in the numbe
particles. This agrees with Scott’s experimental result@5# but
is contrary to the simulation result of Yanget al. @29#. When
the particle number exceeds 10 000 its influence on the p
ing density becomes insignificant. In each simulation, the
fore, we employed 10 000 particles. With 10 000 particles
was also shown that the simulation result is very stable.
example, with equal particles, the simulation was run sev
times and results showed the maximum difference in pack
density to be less than 0.001, and the maximum differenc
coordination number to be less than 0.05. Figure 4 shows
three-dimensional and two-dimensional cross section vie
of the simulated packings.

A. Random packing of particles obeying log-normal
distribution

With particles obeying log-normal distribution, Figs.
and 6 show the effect of the standard deviation of parti
radii s on the random close packing densityfc and random
loose packing densityf1 . Results of other investigations ar
included for comparison. With equal particles, a value
0.6267 to 0.6268 was obtained forfc which agrees well with
the experimental value of 0.625@7,31# but is about 1–2 %
lower than the commonly accepted value of 0.633 to 0.6
@5,23#. However, it should be noted that with 6000 to 20 0
balls, the packing density obtained by Scott@5# was about
0.62 and 0.6334 was the extrapolated value. A value 0.5
to 0.5938 was obtained forf1 which lies between the com
monly accepted values of 0.59 and 0.60. For random cl
packing, the trend of the effect ofs on fc of this study is
quite similar to that obtained by Nolan and Kavanagh@28#
and by Yanget al. @29#. As s is smaller than 0.15 its influ-
e in

FIG. 4. Three-dimensional and two-dimensional cross section views of particle packings, equal particles~left!, log-normal distribution

with s50.25 ~middle!, bidisperse particles withl52.0 andFl50.70 ~right!. The centers of particles represented by the dark circles ar
front of the cross sections.
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PRE 60 7101COMPUTER SIMULATION OF RANDOM PACKING OF . . .
ence onfc is insignificant; whens is greater than 0.15,fc
gradually increases withs. It can be estimated that, fors
50.1, the radii of more than 95% particles are expected
fall between~0.8, 1.2!. For such a narrow distribution, th
ratio of the radii of any two contact particles is close to 1
Therefore, a small standard deviations,0.1 will not cause
significant increase in the packing density. For random lo
packing, Fig. 6 shows that, for small standard deviation,
packing density of this study is much higher than that o
tained by Nolan and Kavanagh@28# and by Yanget al. @29#.
The trend of the effect ofs on f1 of this study is similar to
that of random close packing. While the results obtained
Yang et al. @29# show approximately linear relationship b
tweenf1 ands.

It is the feature of this simulation algorithm that the exa
contacts between particles are very few. Most neighbors
either finely overlapped or separated. If the gap between
particles is smaller than 0.2% of the sum of their radii,
consider that they contact each other. Figure 7 shows
influence ofs on the mean coordination numbers of rando
close packing~RCP! and random loose packing~RLP!. With

FIG. 5. Random close packing density as function of parti
size standard deviation.

FIG. 6. Random loose packing density as function of parti
size standard deviation.
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equal particles, the mean coordination number of rand
close packing of this study is around 5.68 which is about
lower than the commonly accepted value of 6.0. The hig
value was obtained in the experiments@6,7# and in other
simulations @15–18,29#, where the packing process wa
dominated by gravity, i.e., one particle must be supported
least by three others in vertical direction. We did not app
this rule in this study. It was shown that the random pack
structure governed by gravity is anisotropic@15,17#. Figure 7
shows that, for random loose packing, the mean coordina
number is about 0.4 lower than that of random close pack
As s.0.15, the mean coordination numbers of both clo
packing and loose packing gradually decrease with the
crease ins. We observed that, at higher value ofs, the
coordination number spreads over a wider range. Figure
the comparison of the distributions of coordination numb
with different values ofs.

B. Random packing of bidisperse particles

With bidisperse particles, Fig. 9 shows the influences
particle size ratiol and the volume fraction of large particle
Fl on the packing density.Fl is defined byFl5Nll

3/(Ns
1Nll

3), whereNl is the number of large particles andNs is
the number of small particles. Figure 9 shows that the pa
ing density increases withFl and approaches a maximum

e

e

FIG. 7. Mean coordination number as function of particle s
standard deviation.

FIG. 8. Comparison of coordination number distributions.
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7102 PRE 60D. HE, N. N. EKERE, AND L. CAI
before starting to decrease with further increases inFl . The
value ofFl which corresponds to the maximum packing de
sity varies withl. For example, withl51.5 the packing
density is maximized atFl50.6, and withl52.0 the pack-
ing density is maximized atFl50.66. Simulation results als
show that, whenl is smaller than 1.5, bothFl andl have no
significant influence on the packing density; wherel is
greater than 1.5, the packing density significantly increa
with l. The above observations are in good agreement w
that observed by experiment@31# and by other simulation
@18#.

In a random packing of bidisperse particles, it is expec
that the coordination number of a large particle will
higher than that of a small particle. For random close pa
ing with l52.0 andFl50.71, Fig. 10 shows the distribu
tions of coordination numbers of large particlesCl and small
particlesCs , respectively. The range ofCl is from 4 to 15
with a mean of 9.5, while the range ofCs is from 0 to 8 with
a mean of 4.1.

C. The randomness, homogeneity and isotropy of the packing

For equal particles, the randomness of the packing ca
tested by several methods, such as the radial distribu

FIG. 9. Random packing density of bidisperse particles.

FIG. 10. Coordination number distributions of large and sm
particles.
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function @20,23# and the Voronoi-cell statistics@26#. How-
ever, these methods are not applicable to the packing
polydisperse particles. The time series analysis technique
be used to examine the randomness of the packing. U
this technique, form observations,S1 ,S2 ,...,Sm , on a dis-
crete time series, the autocorrelation coefficient is defined

Pk5
( j 51

m2k~sj2 s̄!~sj 1k2 s̄!

( j 51
m ~sj2 s̄!2 , ~5!

wheres̄ is the mean of the observation andk is called the lag
which should be smaller thanm/4. If a time series is com-
pletely random, thenrk obeysN(0,1/m) normal distribution,
and over 95% ofrk lie between62/Am @35#. To employ this

FIG. 11. Area densities on cross sections~top! and autocorrela-
tion coefficients~bottom!.

FIG. 12. Distribution of projections on theX axis.
ll
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PRE 60 7103COMPUTER SIMULATION OF RANDOM PACKING OF . . .
technique, we cut each packing into forty equally separa
cross sections and took the area densities on the cross
tions as the observations; then calculated the first eight
ues ofrk . Figure 11 is the plot of the area densities on t
cross sections together with the plot ofrk againstk. It can be
seen that all the values ofrk lie between62/Am (m540)
and this suggests that the packing is completely random
contrast, for an ordering packing, such as cubic pack
both the area density on the cross section and the autoc
lation coefficient will be periodical functions of the positio
of cross section.

To examine the homogeneity, without consideration
the particles at boundaries, we divided each packing into
equal cubic subregions and counted the centers of particle
each subregion. The result is listed in Table I. Then the c
square goodness-of-fit test was applied to examine the
pothesis that the particles are uniformly distributed amo
the subregions. At 0.05 level the critical value isx0.05,26

2

538.885. The test statistic for equal particles isx252.611,
and for log-normal distributed particlesx257.764, both be-
ing much smaller than the critical value. Therefore, there
no evidence to reject the hypothesis that the particles
uniformly distributed in the packing. This implies that th
packing is homogeneous. For particles with high stand
deviation, the packing density in each subregion should
used to conduct the hypothesis test. This is necessary s
the appearance of a very large particle in a subregion
cause a significant reduction in the number of particles in
Packing obtained by the sequential central growing mod
@21# is radially inhomogeneous.

Tory et al. @17# proved that, for equal particles, if th
projection of two contact particles on any axis obeys unifo
distribution over (22r ,2r ), then the packing is isotropic
Extending this conclusion to unequal particles, it can

TABLE I. Distribution of particles among subregions.

Top Middle Bottom

Equal 280 280 290 282 282 285 289 285 2
particles 283 283 284 287 286 287 280 283 2

283 290 277 280 289 290 290 284 27
Distributed 289 275 267 290 271 279 269 281 2
particles 302 279 268 288 294 269 287 282 2
s50.15 276 276 271 274 290 279 270 279 2
.
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proved that if the relative projections of two contact partic
Dxi j 5uxi2xj u/(r i1r j ), Dyi j 5uyi2yj u/(r i1r j ) and Dzi j
5uzi2zj u/(r i1r j ), obey uniform distribution over~0, 1!,
then the packing is isotropic. The mean and the variance
the projections are 0.5 and 0.0833, respectively. In t
study, for equal particles, the mean projections onX, Y, and
Z axes were found to be 0.4986, 0.5012, and 0.4999, and
variances 0.0832, 0.0834, and 0.0828, respectively. For
normal distributed particles withs50.20, the mean projec
tions are 0.4998, 0.5005, and 0.5002, and the variances
0.0833, 0.0828, and 0.0831, respectively. Figure 12 show
example of the distribution of the projection on theX axis.
Hypothesis test suggests that the projections obey unif
distribution. Therefore, the random packing obtained by t
algorithm is isotropic. It was shown@16,17# that the random
packing obtained by sequential and gravitational addit
model is anisotropic.

IV. CONCLUSION

A Monte Carlo simulation model for the random packin
of polydisperse spherical particles was developed in
work. The random loose packing and random close pack
of log-normal distributed particles and bidisperse partic
were studied. The simulation results are in good agreem
with both experimental and other simulation results. W
particles obeying log-normal distribution, the packing de
sity significantly increases with the particle size standard
viation when it is greater than 0.15, while the coordinati
number decreases with the increase in the standard devia
With bidisperse particles, the packing density increases w
the particle size ratio. At a given size ratio, the maximu
packing density corresponds to a volume fraction of la
particles. Examination of the autocorrelation coefficient
the area densities on the cross sections indicated that
packing is completely random. Statistical hypothesis te
also showed that the packing is homogeneous and isotro
The random packings obtained by this model can repre
the structures of amorphous metals, simple liquids, and
statically compressed components of ceramic and m
powders.
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