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Computer simulation of random packing of unequal particles
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A Monte Carlo simulation model for the random packing of unequal spherical particles is presented in this
paper. With this model, the particle radii obeying a given distribution are generated and randomly placed
within a cubic packing domain with high packing density and many overlaps. Then a relaxation iteration is
applied to reduce or eliminate the overlaps, while the packing space is gradually expanded. The simulation is
completed once the mean overlap value falls below a preset value. To simulate the random close packing, a
“vibration” process is applied after the relaxation iteration. For log-normal distributed particles, the effect of
particle size standard deviation, and for bidisperse particles, the effects of particle size ratio and the volume
fraction of large particles on packing density and on coordination number are investigated. Simulation results
show good agreement with that obtained by experiments and by other simulations. The randomness, homoge-
neity, and isotropy, which have not been evaluated before for packing of distributed particles, are also exam-
ined using statistical measur¢$1063-651X99)02312-0

PACS numbsgs): 81.05.Rm, 05.45-a, 89.80+h

[. INTRODUCTION applied to particles of equal size. In practice, however, the
particle sizes are most likely to be distributed, such as metal
The random packings of hard spherical particles havend ceramic powders, paint pigment, and the atoms of a
long been of interest because they can serve as useful modaisnple homogeneous liquid. For industrial applications, sev-
for many physical and engineering systems, such as the meral advantages can be gained by the use of powders with
crostructures of simple liquidd], concentrated suspensions polydisperse particles, such as obtaining higher density com-
[2], amorphous materials], ceramic components prepared ponents of powderf22] and increasing the fluidity of con-
by compaction of powderg4], and porous materials. Many centrated suspensiof@0—32. The above facts underline the
experimental[5—9] and analytical[10—14 investigations significance of studying the effect of particle size distribution
have been reported. The packing structure, which influencesn the random packing structure. Clarke and W(2§] and
the mechanical, electrical, and thermal properties of suclullien and Meakin 18] simulated the random packing of
materials, can be characterized by several parameters, subltisperse systems by collective rearrangement model and by
as the packing density, the coordination number, and theequential deposition model, respectively. The particle sizes
radial distribution function. It is an extremely labourious taskof natural materials are often represented by log-normal dis-
to obtain these parameters by experiment, while theoreticatibution [33,34]. Significant contributions to the simulation
analysis cannot provide details of the structural data, such asf random packing of particles obeying log-normal distribu-
the distribution of coordination numbers and the radial distion were made by Konakava and IshizgRP], Nolan and
tribution function. Kavanagh 28], and by Yanget al.[29]. Konakava and Ish-
Computer simulation has been proven as a powerful meazaki moved particles toward the packing center one by one.
sure in the study of particle random packing and many modThe packing density obtained by this model decreases with
els have been developed. The simulation models can be clagie increase in particle number. The models developed by
sified into two categories, the sequential generation modelslolan and Kavanagh and by Yarmg al. both belong to the
and the collective rearrangement models. The sequentiabllective rearrangement category. Nolan and Kavanagh pre-
generation models can be further divided into two types. Irsented a repulsive force to relocate the overlapped particles
the first case, one particle is dropped vertically each timend this repulsive force allows smaller particles to travel
onto the surface of an existing particle cluster which growdonger distance. The sample size of this model was small
upwards[15-18. In the second case, a particle is centrip-which might induce significant variation in simulation re-
etally placed on the surface of a center cluster which growsults. Yanget al. only moved the overlapped particles a
outwardg 19—-22. With the collective rearrangement models small distance along the vector sum of overlaps with sur-
[23-29, the initial positions of particles are randomly gen- rounding particles each time, and did not allow the overlap
erated within the packing domain with high initial packing free particles to move. If a particle was locked in by its
density and many overlaps. Then a relaxation process is resurrounding particles, it was allowed to shrink by 10% in
peated to separate the overlapping particles. As the overlagiameter. This model was capable of simulating a large num-
approaches a stable value but is still higher than a specifieder of particles. However, due to the individual shrinkage of
tolerance, the particle sizes are reduced. The relaxation arghrticles, the final size distribution was inconsistent with the
particle size reduction processes are repeatedly applied amgitial distribution.
the simulation is completed when the overlap value drops In this paper, we present a Monte Carlo simulation model
below the given tolerance. which is applicable to the random packing of spherical par-
Most of the models developed to date have only beericles obeying any specified distribution. This model can be
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classified into the collective rearrangement category. In the Lo=
next section, we describe the algorithm used for this simula-

tipq model. In _Sec. lll, we present th_e s_imulation r_esults ofwhere b, is initial packing density which we take unphysi-
bidisperse particles and log-normal distributed particles, tety)y higher than the attainable close random packing density
the randomness, homogeneity, and isotropy of the packingp, s causing many overlaps. In this study 0.75 is taken as the

and discuss the effect of particle size distribution on the, g e of ¢, for random loose packing and 0.86 for random
packing properties. The final section presents our conclugjgse packing.

sions. The overlap rate between two particle is defined Bs (
+rj—dj;)/(ri+r;), whered;; is the center to center distance
[l. THE ALGORITHM andd;;<(r;+rj). In the rearrangement procedure, the fol-

owing relaxation technique is applied to relocate particles to

For faﬂdom loose pfackm_g, the_ 3'90””?”? s com_posed 0Leduce or eliminate overlaps. For each particle, partidier
three main procedures: particle size and initial position gen-

eration, overlap relaxation, and packing space expansion For ample, a'search of particles which overlap.particie'

randorr; close packing a’ “vibration” process is app"'ed%onducted first. Then from each of the.overlapplng part.lc-:les,

within the relaxation procedure. For convenience, the mea Eelxr{ytizj)éalfc?algt)(eijmtf))llet’hzsfcjlr:)?z\ilg glr(]aunlgltigﬁ'a new position

radius of log-normal distributed particles is normalized to be '

1.0, and the radii of small particles of bidisperse mixture r+r.

equal to 1.0. Rji=Rj+(Ri—Rj)f, 3
The patrticle sizes are generated by the following methods. J

For bidisperse particles, at a given fraction of large particle

P_, we examine the values of a set of random numbe

(p1,P2,---,Pn) Which obey uniform distribution ove(0, 1).

If p;>P_, thenr;=1.0, otherwiser;=\. \ is the ratio of

radii of large particle to small particle and is the total

number of particles. 10
For particles obeying log-normal distribution, the prob- R==—2 R;j . (4

ability density function of particle radiusis given by nij=1

r%/vhereRi andR; are vectors of the centers of parti¢clandj,
?espectively. If particleé is overlapped byn; particles, then
by Eqg.(3) n; positions can be obtained, and the new position
of particlei is given by

Figure 3 shows the two-dimensional case of the relocation of

f(r)= 1 g (Inr=in fo)2/2<72, (1) particle i by one step. This relaxation is applied to every
N2mar overlapped patrticle. If a particle neither overlaps nor contacts

others, it is moved to contact its nearest neighbor. Periodical

where Inrg and o are the mean and the standard deviation ofboundary condition is applied to particles near the boundary.
Inr. If the mean of particle radii is normalized to be 1.0, thenAfter one iteration each particle has been relocated once. By
Inry approaches zero. Again, we first generate a set of rarrepeating the iteration the mean of the overlap rates gradu-
dom numbers (§,,p,,...,pn) 0Obeying uniform distribution ally decreases. To avoid any bias the sequence of particle
over (0, 1). Then we obtain a set of random numbersrearrangements is randomized after each iteration.
(rq,ro,...,rn) obeying log-normal distribution by two con- After a given number of iterations, packing space is ex-
versions as$;= o(—In p)¥?sin(2mp,.,), andr;=expt). Fig- panded to_=a,L,. a, is the expanding factor which is de-
ure 1 is the comparison of theoretical density function withpendent on the present mean overlap rate. By repeating the
that of ten thousand samples generated by the above methaélaxation and expansion procedures, the overlap rate even-

The initial position §;,y;,z) of a particle is generated tually drops below a preset tolerance and the simulation is
within a cubic domain andx,y; ,z) obey uniform distribu- completed. In this study, 2:010™“ is accepted as the toler-
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packing density increases with the increase in the number of
particles. This agrees with Scott's experimental ref&jlbut

is contrary to the simulation result of Yarg al. [29]. When

the particle number exceeds 10 000 its influence on the pack-
ing density becomes insignificant. In each simulation, there-
fore, we employed 10 000 particles. With 10 000 particles, it

was also shown that the simulation result is very stable. For
example, with equal particles, the simulation was run several
times and results showed the maximum difference in packing
density to be less than 0.001, and the maximum difference in
coordination number to be less than 0.05. Figure 4 shows the
three-dimensional and two-dimensional cross section views
of the simulated packings.

) , ] A. Random packing of particles obeying log-normal
-—— Before relocation After relocation distribution

FIG. 3. Relocation of particlé With particles obeying log-normal distribution, Figs. 5
and 6 show the effect of the standard deviation of particle
ance which ensures that the relative error of the final packingadii o on the random close packing density and random
density will be less than 1G. loose packing density, . Results of other investigations are
To simulate the random close packing obtained by vibraincluded for comparison. With equal particles, a value of
tion, we increase the number of rearrangement iteration€).6267 to 0.6268 was obtained fég which agrees well with
Meanwhile, after each iteration, we apply a “vibration” pro- the experimental value of 0.62%,31] but is about 1-2 %
cess to randomly disturb the positions of those particlesower than the commonly accepted value of 0.633 to 0.640
which have a coordination number less than 4 since the pat5,23]. However, it should be noted that with 6000 to 20 000
ticles that form bridges have fewer contacts with others. balls, the packing density obtained by Scidt was about
0.62 and 0.6334 was the extrapolated value. A value 0.5935
to 0.5938 was obtained fap, which lies between the com-
Nl RESULTS AND DISCUSSION monly accepted values of 0.59 and 0.60. For random close
The above simulation algorithm was applied to simulatepacking, the trend of the effect @f on ¢ of this study is
the random loose and random close packings of log-normajuite similar to that obtained by Nolan and KavandgB]
distributed and bidisperse particles. We observed that thand by Yanget al. [29]. As ¢ is smaller than 0.15 its influ-

FIG. 4. Three-dimensional and two-dimensional cross section views of particle packings, equal péefi¢ldeg-normal distribution
with o=0.25(middle), bidisperse particles with=2.0 andF,;=0.70 (right). The centers of particles represented by the dark circles are in
front of the cross sections.
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FIG. 7. Mean coordination humber as function of particle size

FIG. 5. Random close packing density as function of partidestandard deviation.

size standard deviation.

equal particles, the mean coordination number of random

ence ong, is insignificant; whero is greater than 0.156.  close packing of this study is around 5.68 which is about 5%
gradually increases withr. It can be estimated that, far  |ower than the commonly accepted value of 6.0. The higher
=0.1, the radii of more than 95% particles are expected tvalue was obtained in the experimen7] and in other
fall between(0.8, 1.2. For such a narrow distribution, the simulations [15—-18,29, where the packing process was
ratio of the radii of any two contact particles is close to 1.0.dominated by gravity, i.e., one particle must be supported at
Therefore, a small standard deviatior<0.1 will not cause least by three others in vertical direction. We did not apply
significant increase in the packing density. For random loosehis rule in this study. It was shown that the random packing
packing, Fig. 6 shows that, for small standard deviation, thetructure governed by gravity is anisotropic,17. Figure 7
packing density of this study is much higher than that ob-shows that, for random loose packing, the mean coordination
tained by Nolan and KavanadBs8] and by Yanget al.[29].  number is about 0.4 lower than that of random close packing.
The trend of the effect of on ¢, of this study is similar to  As ¢>0.15, the mean coordination numbers of both close
that of random close packing. While the results obtained byyacking and loose packing gradually decrease with the in-
Yang et al. [29] show approximately linear relationship be- crease ino. We observed that, at higher value of the
tweeng¢, ando. coordination number spreads over a wider range. Figure 8 is

It is the feature of this simulation algorithm that the exactthe comparison of the distributions of coordination number
contacts between particles are very few. Most neighbors argith different values ofo.
either finely overlapped or separated. If the gap between two
particles is smaller than 0.2% of the sum of their radii, we
consider that they contact each other. Figure 7 shows the - . . .
influence ofo on the mean coordination numbers of random _ With bidisperse particles, Fig. 9 shows the influences of
close packingRCP and random loose packin@LP). With particle size rauq and th_e voIl_Jme fr_actlon of large ;:s)artlcles
F, on the packing densityF, is defined byF,=N;N>/(Ng
+N;\%), whereN, is the number of large particles ai is

B. Random packing of bidisperse particles

0 Simulation [29] the number of small particles. Figure 9 shows that the pack-
0661 A Simulation [28] ing density increases witk; and approaches a maximum
~ 0.64 + Experiment [9]
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before starting to decrease with further increaseis,inThe 2 1VED N
value ofF, which corresponds to the maximum packing den- ~ I T T I Y E
sity varies with\. For example, withh=1.5 the packing 0 2 4 6 8
density is maximized af,;=0.6, and withx =2.0 the pack- Lag £
ing density is maximized &, =0.66. Simulation results also . .
show that, when is smaller than 1.5, botR, and\ have no FIG. 11. Area densities on cross secti¢ttp) and autocorrela-

significant influence on the packing density; whexeis tion coefficients(bottom.

greater than 1.5, the packing density significantly increase . . -

with \. The above observations are in good agreement wit unction [20,23 and the Voronm—ce]l statisticE26]. HOW.'

that observed by experimef81] and by other simulation ever,.these methods are not applllcable to .the pagkmg of

[18] polydisperse particles. The time series analysis technique can
In a random packing of bidisperse particles, it is expectecphet' uset;l] tp exa][mne Lhe ranglomness of the packlng: Using

that the coordination number of a large particle will be (IS technique, fom o servatlonssl,sz,...,_sm, on a dis-

higher than that of a small particle. For random close packg:rete time series, the autocorrelation coefficient is defined as

ing with A\=2.0 andF,;=0.71, Fig. 10 shows the distribu- S K5 —5)(S 4 (—F)

tions of coordination numbers of large partictesand small _Ji=l m’ ”2" 7 (5)

particlesCg, respectively. The range @, is from 4 to 15 ZiLi(5—9)

with a mean of 9.5, while the range Gf is from 0 to 8 with

a mean of 4.1.

k

wheres is the mean of the observation akés called the lag
which should be smaller tham/4. If a time series is com-
C. The randomness, homogeneity and isotropy of the packing pletely random, thep, obeysN(0,1/m) normal distribution,
0 1 i
For equal particles, the randomness of the packing can b%nd over 95% oy lie betweer= 2/ym [35]. To employ this
tested by several methods, such as the radial distribution

25K —~ 5T g T ————]
S 2=20 g’
g 20 F,=0.71 § 4t .
:
& 15 — Small particles o B
& . "
s | | 7 Large particles «2‘
g g2 :
g 5h - 2
= rTL, = 1L .

| 1 | L—I——l_\—J—,_J
01 5 10 15
Coordination number 0.0 0.2 0.4 0.6 0.8 1.0

Relative projection on X axis
FIG. 10. Coordination number distributions of large and small

particles. FIG. 12. Distribution of projections on th¢ axis.
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TABLE I. Distribution of particles among subregions. proved that if the relative projections of two contact particles
_ Axiy=|xi=xl/(ri+ry), Ayy=lyi—yjl/(ri+r;) and Az
Top Middle Bottom =|z,—z|/(ri+r;), obey uniform distribution ovex0, 1),
Equal 280 280 290 282 282 285 289 285 272 then the packing is isotropic. The mean and the variance of

particles 283 283 284 287 286 287 280 283 294the projections are.0.5 and 0.0833, _respectively. In this
study, for equal particles, the mean projectionsXgry, and
283 290 277 280 289 290 290 284 275
Distributed 289 275 267 200 271 279 269 281 2Slzaxes were found to be 0.4986, 0.5012, and 0._4999, and the
, variances 0.0832, 0.0834, and 0.0828, respectively. For log-
particles 302 279 268 288 294 269 287 282 282, distributed particles with=0.20, the mean projec-
0=0.15 276 276 271 274 290 279 270 279 2744iong gre 0.4998, 0.5005, and 0.5002, and the variances are
0.0833, 0.0828, and 0.0831, respectively. Figure 12 shows an
example of the distribution of the projection on tKeaxis.
technique, we cut each packing into forty equally separategiypothesis test suggests that the projections obey uniform
cross sections and took the area densities on the cross sefistribution. Therefore, the random packing obtained by this
tions as the observations; then calculated the first eight vallgorithm is isotropic. It was show[i6,17] that the random
ues ofpy. Figure 11 is the plot of the area densities on thepacking obtained by sequential and gravitational addition
cross sections together with the plotmgfagainstk. It can be  model is anisotropic.
seen that all the values @ lie between=2/\m (m=40)
and this suggests that the packing is completely random. In IV. CONCLUSION
contrast, for an ordering packing, such as cubic packing, . . .
both the area density on the cross section and the autocorre: A Monte Carlo S|mu]at|on quel for the random papkmg_
lation coefficient will be periodical functions of the position of polydisperse spherical par_t|cles was developed in th's
of cross section. work. The randqm _Ioose pack_mg and ran_d(_)m close pa(_:klng
To examine the homogeneity, without consideration Ofof Iog-normal dlstrlputed partlcles and bl_dlsperse particles
the particles at boundaries, we divided each packing into 2yere studied. The simulation results. are in good agreement
equal cubic subregions and counted the centers of particles YM'”‘. both expgnmental and ot.her' S|mulat|on resu!ts. With
each subregion. The result is listed in Table I. Then the Chip'artlc_les' pbeylng Iog-norma! d|str|but|o_n, the packing den-
square goodness-of-fit test was applied to examine the h)?—!ty significantly increases with the particle size standard de-

pothesis that the particles are uniformly distributed amonqg'at'%n V\(/jhen Itis gre_;ir;[et;] th_an 0'15’.W3']|e tthe goczjro(ljlna_tl(:_n
the subregions. At 0.05 level the critical value ;{%_05,26 Umber decreases wi € Increase in the standard deviation.

—38.885. The test statistic for equal particlesy’=2.611, With bidisperse particles, the packing density increases with

and for log-normal distributed particleg=7.764, both be- the partlcle size ratio. At a given size ratio, th? maximum
) " . packing density corresponds to a volume fraction of large
ing much smaller than the critical value. Therefore, there i : L : .y
o evidence to reiect the hvoothesis that the particles ar articles. Examination of the autocorrelation coefficient of

. € 1o reject ypotr at the p e area densities on the cross sections indicated that the
uniformly distributed in the packing. This implies that the

packing is homogeneous. For particles with high standard acking is completely ran.dorr.\. Statistical hypothesis tests
deviation, the packing density in each subregion should balso showed that the packing is homogeneous and isotropic.

used to conduct the hypothesis test. This is necessary sin%(qahe random packings obtained by this model can represent

the appearance of a verv large particle in a subreqion cane structures of amorphous metals, simple liquids, and iso-
ppearanc y large p egion .- Statically compressed components of ceramic and metal
cause a significant reduction in the number of particles in it;

; . ) . owders.
Packing obtained by the sequential central growing model8
[21] is radially inhomogeneous.

Tory et al. [17] proved that, for equal particles, if the
projection of two contact particles on any axis obeys uniform  This research was funded by the Engineering and Physical
distribution over ¢ 2r,2r), then the packing is isotropic. Sciences Research Council of the United Kingdom under
Extending this conclusion to unequal particles, it can beGrant No. GR/L20597.

ACKNOWLEDGMENTS

[1] J. D. Bernal, NaturéLondon 185, 68 (1960. [9] H. Y. Sohn and C. Moreland, Can. J. Chem. E4§, 162

[2] S. Torquato and F. Lado, Phys. Rev.3B, 6428(1986. (1968.

[3] A. Angell, J. H. R. Clarke, and L. V. Woodcock, Adv. Chem. [10] K. Gotoh and J. L. Finney, Naturgondon 252 202 (1974.
Phys.48, 397 (1981)). [11] J. G. Berryman, Phys. Rev. A7, 1053(1983.

[4] Y. Hamad, K. Ishizaki, and J. Briceno, J. Ceram. Soc. 98n. [12] A. B. Yu and N. Standish, Powder Technbb, 171(1988.
343(1990. [13] M. Alonso, E. Sainz, F. A. Lopez, and K. Shinohara, Chem.

[5] G. D. Scott, NaturéLondon 188 908 (1960. Eng. Sci.50, 1983(1995.

[6] G. D. Scott and D. M. Kilgour, J. Appl. Phy®, 863(1969. [14] Y. Roualt and S. Assouline, Powder Techr@f, 33 (1998.
[7] J. D. Bernal and J. Mason, Natufieondon 188 910 (1960. [15] E. M. Tory, N. A. Cochrane, and S. R. Waddell, Nat(@ren-
[8] G. Y. Onoda and E. G. Liniger, Phys. Rev. Lef, 2727 don) 220, 1023(1968.

(1990. [16] W. M. Visscher and M. Bolsterli, Naturé_ondon 239 504



7104

(1972.

[17] E. M. Tory, B. H. Church, M. K. Tam, and M. Ratner, Can. J.

Chem. Eng51, 484 (1973.
[18] R. Jullien and P. Meakin, Europhys. Le#. 629 (1988.
[19] C. H. Bennett, J. Appl. Phy€l3, 2727 (1972.
[20] A. J. Matheson, J. Phys. T 2569(1974).
[21] G. Q. Lu and X. Shi, J. Mater. Sci. Lett3, 1709(1994.
[22] Y. Konakawa and K. Ishizaki, Powder Technd3, 241
(1990.
[23] J. L. Finney, Mater. Sci. En®3, 199(1976.
[24] W. S. Jodrey and E. M. Tory, Powder Techrg0, 111(1981.
[25] W. S. Jodrey and E. M. Tory, Phys. Rev.3®, 2347(1985.
[26] A. S. Clarke and J. D. Wiley, Phys. Rev.35, 7350(1987.
[27] G. T. Nolan and P. E. Kavanagh, Powder Techm@, 149
(1992.

D. HE, N. N. EKERE, AND L. CAI

PRE 60

[28] G. T. Nolan and P. E. Kavanagh, Powder Techr@, 309
(1993.

[29] A. Yang, G. T. Miller, and L. D. Turcoliver, Phys. Rev. %3,
1516(1996.

[30] M. Z. Sengun and R. F. Probstein, Rheol. A28 394(1989.

[31] A. P. Shapiro and R. F. Probstein, Phys. Rev. L&8. 1422
(1992.

[32] R. D. Sudduth, J. Appl. Polym. Sci8, 37 (1993.

[33] W. A. Gray, The Packing of Solid Particle€Chapman and
Hall, London,1968

[34] H. Rumpf, Particle Technology(Chapman and Hall, Lon-
don,1990.

[35] C. Chatfield,The Analysis of Time Serié€hapman and Hall,
London, 1989.



